The other endpoint is (1, -17).
The midpoint formula is:
[tex]m=(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2})[/tex]
Using our midpoint and endpoint, we have:
[tex](6, -11) = (\frac{11+x_2}{2}, \frac{-5+y_2}{2})
\\
\\6=\frac{11+x_2}{2} \text{ and } -11=\frac{-5+y_2}{2}
[/tex]
For the first equation (to find the x-coordinate) we will multiply both sides by 2:
[tex]6\times2=\frac{11+x_2}{2}\times 2
\\
\\12=11+x_2[/tex]
Subtract 11 from both sides:
12 - 11 = 11+x₂ - 11
1 = x₂
For the second equation (the y-coordinate) we multiply both sides by 2:
[tex]-11\times2=\frac{-5+y_2}{2}\times 2
\\
\\-22=-5+y_2[/tex]
Add 5 to both sides:
-22+5 = -5+y₂ + 5
-17 = y₂
This means that (x₂, y₂) is at (1, -17).