Respuesta :
Answer:
B. x/13
Step-by-step explanation:
As x takes on integer values 1, 2, 3, 4, ..., the expression x/13 evaluates to ...
... 1/13, 2/13, 3/13, 4/13, ...
which matches the sequence in the problem statement.
ANSWER
B.
[tex] \frac{x}{13} [/tex]
EXPLANATION
The given sequence is
[tex] \frac{1}{13} , \frac{2}{13} , \frac{3}{13} , \frac{4}{13} ,...[/tex]
There is a constant difference of
[tex]d = \frac{4}{13} - \frac{3}{13} = \frac{3}{13} - \frac{2}{13} = \frac{2}{13} - \frac{1}{13} = \frac{1}{13} [/tex]
This implies that the sequence is an arithmetic progression.
The general arithmetic sequence is of the form:
[tex]U_x=a_1+(x-1)d
[/tex]
The first term of this sequence is
[tex]a_1= \frac{1}{13} [/tex]
We substitute the given values to obtain,
[tex]U_x= \frac{1}{13} +(x-1) \times \frac{1}{13}
[/tex]
We expand the bracket to obtain,
[tex]U_x= \frac{1}{13} + \frac{x}{13} - \frac{1}{13} [/tex]
This simplifies to,
[tex]U_x= \frac{x}{13}
[/tex]
The correct answer is B.
B.
[tex] \frac{x}{13} [/tex]
EXPLANATION
The given sequence is
[tex] \frac{1}{13} , \frac{2}{13} , \frac{3}{13} , \frac{4}{13} ,...[/tex]
There is a constant difference of
[tex]d = \frac{4}{13} - \frac{3}{13} = \frac{3}{13} - \frac{2}{13} = \frac{2}{13} - \frac{1}{13} = \frac{1}{13} [/tex]
This implies that the sequence is an arithmetic progression.
The general arithmetic sequence is of the form:
[tex]U_x=a_1+(x-1)d
[/tex]
The first term of this sequence is
[tex]a_1= \frac{1}{13} [/tex]
We substitute the given values to obtain,
[tex]U_x= \frac{1}{13} +(x-1) \times \frac{1}{13}
[/tex]
We expand the bracket to obtain,
[tex]U_x= \frac{1}{13} + \frac{x}{13} - \frac{1}{13} [/tex]
This simplifies to,
[tex]U_x= \frac{x}{13}
[/tex]
The correct answer is B.