Respuesta :
◆ CO-ORDINATE GEOMETRY ◆
[tex]We \: are \: given \: the \: co - ordinates \: \: , \\ \\ l(3,5) \: \: \: \: \: \: and \: \: \: \: \: m(9, - 7) \\ \\ \\ By \: distance \: formula \: \: , \: \\ distance \: between \: two \: points \: \\ \\ (x1,y1) \: \: \: and \: \: \: (x2,y2) \: \: \: is \: given \: by \: , \\ \\ \sqrt{ {(x2 - x1)}^{2} + ( {y2 - y1)}^{2} } \\ \\ here \: , \: \: \\ (x1,y1) = (3,5) \: \: and \: \\ (x2,y2) =(9, - 7) \\ \\ Distance \: lm \: = \sqrt{ {(9 - 3)}^{2} + ( { - 7 - 5)}^{2} } \\ \\ lm = \sqrt{ {6}^{2} + ( { - 12)}^{2} } \\ \\ lm = \sqrt{36 + 144} \\ \\ lm \: = \sqrt{180} = 6 \sqrt{5} \: \: \: \: \: ans.[/tex]
[tex]We \: are \: given \: the \: co - ordinates \: \: , \\ \\ l(3,5) \: \: \: \: \: \: and \: \: \: \: \: m(9, - 7) \\ \\ \\ By \: distance \: formula \: \: , \: \\ distance \: between \: two \: points \: \\ \\ (x1,y1) \: \: \: and \: \: \: (x2,y2) \: \: \: is \: given \: by \: , \\ \\ \sqrt{ {(x2 - x1)}^{2} + ( {y2 - y1)}^{2} } \\ \\ here \: , \: \: \\ (x1,y1) = (3,5) \: \: and \: \\ (x2,y2) =(9, - 7) \\ \\ Distance \: lm \: = \sqrt{ {(9 - 3)}^{2} + ( { - 7 - 5)}^{2} } \\ \\ lm = \sqrt{ {6}^{2} + ( { - 12)}^{2} } \\ \\ lm = \sqrt{36 + 144} \\ \\ lm \: = \sqrt{180} = 6 \sqrt{5} \: \: \: \: \: ans.[/tex]