Respuesta :

Answer:

[tex]\sum _{n=1}^4n+4=26[/tex]

Step-by-step explanation:

 Given : [tex]\sum _{n=1}^4\:n+4[/tex]

We have to evaluate the sum.

 

Consider , the given sum [tex]\sum _{n=1}^4\:n+4[/tex]

Apply the sum rule, [tex]\sum a_n+b_n=\sum a_n+\sum b_n[/tex]    

we have,

[tex]=\sum _{n=1}^4n+\sum _{n=1}^44[/tex]

Consider [tex]\sum _{n=1}^4n[/tex] first,

Applying sum formula, [tex]\sum _{k=1}^nk=\frac{1}{2}n\left(n+1\right)[/tex]

Here, n = 4, we get,

[tex]=\frac{1}{2}\cdot \:4\left(4+1\right)[/tex]

[tex]\sum _{n=1}^4n=10[/tex]

Now consider [tex]\sum _{n=1}^44[/tex]

[tex]\mathrm{Apply\:the\:Sum\:Formula:\quad }\sum _{k=1}^n\:a\:=\:a\cdot n[/tex]

[tex]=4\cdot \:4=16[/tex]

Therefore, [tex]=\sum _{n=1}^4n+\sum _{n=1}^44=10+16=26[/tex]

Thus, [tex]\sum _{n=1}^4n+4=26[/tex]

Answer: The quick check answers

1. B 2. B 3. B 4. C 5. A

Step-by-step explanation: