Respuesta :

8x^3y^4(3 sqrt xy) LETTER A :)

Answer:

The sum of given expression [tex]\sqrt[3]{125}x^{10}y^{13}+\sqrt[3]{27}x^{10}y^{13}[/tex] is  [tex]8x^{10}y^{13}[/tex]

Step-by-step explanation:

 Given : expression [tex]\sqrt[3]{125}x^{10}y^{13}+\sqrt[3]{27}x^{10}y^{13}[/tex]

We have find the sum of given expression [tex]\sqrt[3]{125}x^{10}y^{13}+\sqrt[3]{27}x^{10}y^{13}[/tex]

Consider the given expression [tex]\sqrt[3]{125}x^{10}y^{13}+\sqrt[3]{27}x^{10}y^{13}[/tex]

[tex]\sqrt[3]{125}=\sqrt[3]{5\times 5 \times 5}=\sqrt[3]{5^3}[/tex]

Apply radical rule, [tex]\sqrt[n]{a^n}=a[/tex]

we have, [tex]\sqrt[3]{125}=\sqrt[3]{5^3}=5[/tex]

Also,  [tex]\sqrt[3]{27}=\sqrt[3]{3\times 3 \times 3}= \sqrt[3]{3^3}[/tex]

Apply radical rule, [tex]\sqrt[n]{a^n}=a[/tex]

we have, [tex]\sqrt[3]{27}=\sqrt[3]{3^3}=3[/tex]

Thus, given expression becomes,

[tex]\sqrt[3]{125}x^{10}y^{13}+\sqrt[3]{27}x^{10}y^{13}[/tex]

[tex]\Rightarrow 5x^{10}y^{13}+3x^{10}y^{13}[/tex]

Simplify, we get,

[tex]\Rightarrow 8x^{10}y^{13}[/tex]

Thus, the sum of given expression [tex]\sqrt[3]{125}x^{10}y^{13}+\sqrt[3]{27}x^{10}y^{13}[/tex] is  [tex]8x^{10}y^{13}[/tex]