Respuesta :

[tex]\bf \begin{array}{ccccccccc} &&x_1&&y_1&&x_2&&y_2\\ % (a,b) &&(~ -4 &,& -4~) % (c,d) &&(~ 4 &,& 8~) \end{array} \\\\\\ % slope = m slope = m\implies \cfrac{\stackrel{rise}{ y_2- y_1}}{\stackrel{run}{ x_2- x_1}}\implies \cfrac{8-(-4)}{4-(-4)}\implies \cfrac{8+4}{4+4}\implies \cfrac{12}{8}\implies \cfrac{3}{2}[/tex]

[tex]\bf \stackrel{\textit{point-slope form}}{y- y_1= m(x- x_1)}y-(-4)=\cfrac{3}{2}[x-(-4)] \\\\\\ y+4=\cfrac{3}{2}(x+4)\implies y+4=\cfrac{3}{2}x+6\implies y=\stackrel{slope}{\cfrac{3}{2}}x\stackrel{y-intercept}{+2}[/tex]

notice the slope-intercept form, that's the y-coordinate.