The diameter of the base of the cone measures 8 units. The height measures 6 units.



What is the volume of the cone?

24π cubic units
32π cubic units
48π cubic units
64π cubic units

Respuesta :

the answer would be 32pi 

The volume [tex]V[/tex] of a cone is given by the formula  [tex]V=\frac{1}{3}A_b\cdot h[/tex] ,  where  [tex]A_b[/tex]  is the area of the base and  [tex]h[/tex] is the height of the cone.

The cone in question here is a right circular base cone. The volume of a right circular base cone with radius  [tex]r[/tex]  is,

[tex]V=\frac{1}{3} \pi r^2h\\[/tex].

In this problem, the diameter is given instead of the radius. If the diameter is 8 units, the radius of the cone is then 4 units because it is half of the radius.

The volume of this cone is therefore,

[tex]V=\frac{1}{3} \pi r^2=\frac{1}{3}\pi  (4)^2\times 6 =\frac{\pi} {3}\times 16\times 6= 32\pi .[/tex]

The volume of this cone is [tex]32\pi units^3[/tex]