The owner of a Farmer’s Market wants to construct a triangular fruit stand in his store. Use the diagram below and the Law of Sines to determine the dimensions of the sides of the fruit stand.

A. 3.5 x 6 x 3.8
B. 3.5 x 2 x 3..2
C. 3.5 x 2.9 x 3.3
D. 3.5 x 2.5 x 3.4

Please select the best answer from the choices provided

The owner of a Farmers Market wants to construct a triangular fruit stand in his store Use the diagram below and the Law of Sines to determine the dimensions of class=

Respuesta :

Hello,
Please, see the attached file.
Thanks.
Ver imagen Professor1994

Answer:

The dimensions of the sides of the fruit stand are 3.5 feet , 2.0 feet  and 3.2 feet. Option B is correct.

Step-by-step explanation:

Given information: [tex]\angle A=35^{\circ}[/tex], [tex]\angle B=65^{\circ}[/tex] and [tex]c=3.5ft[/tex].

According to the angle sum property of a triangle, the sum of all interior angles of a triangle is 180 degree.

[tex]\angle A+\angle B+\angle C=180^{\circ}[/tex]

[tex]35^{\circ}+65^{\circ}+\angle C=180^{\circ}[/tex]

[tex]\angle C=180^{\circ}-100^{\circ}[/tex]

[tex]\angle C=80^{\circ}[/tex]

According to Law of sines

[tex]\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}[/tex]

[tex]\frac{a}{\sin A}=\frac{c}{\sin C}[/tex]

[tex]\frac{a}{\sin 35}=\frac{3.5}{\sin 80}[/tex]

[tex]a=\frac{3.5}{\sin 80}\times \sin 35[/tex]

[tex]a=2.04[/tex]

[tex]a\approx 2.0[/tex]

[tex]\frac{b}{\sin B}=\frac{c}{\sin C}[/tex]

[tex]\frac{b}{\sin 65}=\frac{3.5}{\sin 80}[/tex]

[tex]b=\frac{3.5}{\sin 80}\times \sin 65[/tex]

[tex]b=3.22[/tex]

[tex]b\approx 3.2[/tex]

Therefore the dimensions of the sides of the fruit stand are 3.5 feet , 2.0 feet  and 3.2 feet. Option B is correct.

Ver imagen DelcieRiveria