Respuesta :

ANSWER

[tex]x = \pm \sqrt{17}[/tex]
EXPLANATION

The given equation is

[tex] ln( {x}^{2} - 16) = 0[/tex]

Take antilogarithm of both sides to base e.

[tex] {e}^{ ln( {x}^{2} - 16) } = {e}^{0} [/tex]

This will simplify to

[tex] {x}^{2} - 16 = 1[/tex]

Group like terms to obtain,

[tex]{x}^{2} = 1 + 16[/tex]

[tex]{x}^{2} = 17[/tex]

Take square root of both sides to get,

[tex]x = \pm \sqrt{17} [/tex]

Answer:

[tex]x=\pm \sqrt{17}[/tex]

Step-by-step explanation:

Given : [tex]ln( {x}^{2} - 16) = 0[/tex]

To Find: x

Solution:

[tex]ln( {x}^{2} - 16) = 0[/tex]

Take antilogarithm of both sides to base e.  

[tex]{e}^{ ln( {x}^{2} - 16) } = {e}^{0}[/tex]

[tex]{x}^{2} - 16 = 1[/tex]

Now, Group like terms

[tex]{x}^{2} = 1 + 16[/tex]

[tex]{x}^{2} = 17[/tex]

[tex]x=\pm \sqrt{17}[/tex]

Thus the solution to   [tex]ln( {x}^{2} - 16) = 0[/tex]  is    [tex]x=\pm \sqrt{17}[/tex]