Respuesta :

Answer: Second option :

[tex]3x^2y(2x^2y^2+7xy -3)[/tex]

Step-by-step explanation:

Given expression [tex]6x^4y^3+21x^3y^2-9x^2y[/tex].

We need to find greatest common factor (GCF) of all the terms.

Let us write all terms in expanded form first.

[tex]6x^4y^3 = 2 \times 3 \times x \times x \times x \times x \times y \times y \times y[/tex]

[tex]21x^3y^2 = 3 \times 7 \times x \times x \times x \times y \times y.[/tex]

[tex]9x^2y=3 \times 3 \times x \times x \times y.[/tex]

We can see that first factor is 3 common, second factor is [tex]x \times x[/tex] and third factor is y.

Therefore, GCF would be [tex]3x^2y.[/tex]

Now, let us factor out GCF [tex]3x^2y[/tex] and keep the remaining terms inside parenthesis.

=[tex]3x^2y(2x^2y^2+7xy -3)[/tex]

Therefore, correct option is 2nd option [tex]3x^2y(2x^2y^2+7xy -3)[/tex].



Answer:

B is correct

Step-by-step explanation:

I took the test and got it right