Respuesta :

Answer:

[tex] \frac{-2x \times (x+3)}{(x-2)(x+1)(x-1)}[/tex]

Step-by-step explanation:

we are given

[tex] \frac{2x}{x^2-x-2} - \frac{4x}{x^2-3x+2}[/tex]           ----------(A)

Let us simplify the two denominators first. One by one

[tex]x^2-x-2[/tex]

= [tex]x^2-2x+x-2[/tex]

= [tex]x(x-2)-1(x-2)[/tex]

= [tex](x-2)(x+1)[/tex]

[tex]{x^2-3x+2}[/tex]

=[tex]x^2-x-2x+2[/tex]

=[tex]x(x-1)-2(x-1)[/tex]

=[tex](x-1)(x-2)[/tex]

Hence (A) becomes

[tex]\frac{2x}{x^2-x-2} - \frac{4x}{x^2-3x+2}[/tex]

= [tex]\frac{2x}{(x-2)(x+1)} - \frac{4x}{(x-2)(x-1)}[/tex]

taking out [tex]\frac{2x}{x-2}[/tex]  as GCD

[tex]\frac{2x}{x-2}( \frac{1}{x+1} - \frac{2}{x-1}[/tex]

[tex]\frac{2x}{x-2}(\frac{(x-1)-2(x+1)}{(x+1)(x-1)}[/tex]

[tex]\frac{2x}{x-2}(\frac{x-1-2x-2)}{(x+1)(x-1)}[/tex]

[tex]\frac{2x}{x-2}(\frac{(-x-3)}{(x+1)(x-1)}[/tex]

[tex]\frac{-2x \times (x+3)}{(x-2)(x+1)(x-1)}[/tex]