Respuesta :

hahahresyh54ywsr4r 5eygrat

we are given

three vertices as

A (2,6) B(0,2) C (3,3)

now, we can draw these vertices and find triangle

we can use distance formula

and find AB , BC and AC

[tex] d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2} [/tex]

Calculation of AB:

We can use formula

[tex] d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2} [/tex]

A (2,6) B(0,2)

[tex] AB=\sqrt{(0-2)^2+(6-2)^2} [/tex]

[tex] AB=\sqrt{20} [/tex]

Calculation of BC:

We can use formula

[tex] d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2} [/tex]

B(0,2) C(3,3)

[tex] BC=\sqrt{(3-0)^2+(3-2)^2} [/tex]

[tex] BC=\sqrt{10} [/tex]

Calculation of AC:

We can use formula

[tex] d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2} [/tex]

A(2,6) C(3,3)

[tex] AC=\sqrt{(3-2)^2+(3-6)^2} [/tex]

[tex] AC=\sqrt{10} [/tex]

Checking right angled triangle:

We can check it by Pythagoras theorem

[tex] AB^2=BC^2+AC^2 [/tex]

now, we can plug values

[tex] (\sqrt{20})^2=(\sqrt{10})^2+(\sqrt{10})^2 [/tex]

[tex] 20=10+10 [/tex]

[tex] 20=20 [/tex]

we can see that

left side is equal to right side

so, triangle ABC is right angled triangle.........Answer

Ver imagen rejkjavik