Respuesta :

[tex]\bf \cfrac{24w^{10}+8w^{12}}{4w^4}\impliedby \textit{distibuting the denominator} \\\\\\ \cfrac{24w^{10}}{4w^4}+\cfrac{8w^{12}}{4w^4}\implies 6w^{10}w^{-4}+2w^{12}w^{-4}\implies 6w^{10-4}+2w^{12-4} \\\\\\ 6w^6+2w^8[/tex]

Answer:

[tex]\Rightarrow 6w^6+2w^8[/tex]

Step-by-step explanation:

Given: [tex]\dfrac{24w^{10}+8w^{12}}{4w^4}[/tex]

We need to divide it

First we factor numerator and denominator and cancel the like factor from top and bottom.

[tex]24w^{10}\rightarrow 6\cdot 4\cdot w^{10}[/tex]

[tex]8w^{12}\rightarrow 2\cdot 4\cdot w^{10}\cdot w^2[/tex]

Now factor the numerator. Take out [tex]4w^{10}[/tex] common

[tex]\Rightarrow \dfrac{4w^{10}(6+2w^2)}{4w^4}[/tex]

cancel 4 and [tex]w^4[/tex]

[tex]\Rightarrow w^{6}(6+2w^2)[/tex]

We get

[tex]\Rightarrow 6w^6+2w^8[/tex]

Hence, The result of division is [tex]\Rightarrow 6w^6+2w^8[/tex]