Respuesta :
If f(4) = 246.4 when r = 0.04 for the function f(t) = Pe^rt , then what is the approximate value of P?
Solution:
f(t)=Pe^rt
when r=0.04, the f(t)=246.4, thus the value of P will be:
246.4=Pe^0.04t
P=(246.4)/(0.04t)
where t=time
Solution:
f(t)=Pe^rt
when r=0.04, the f(t)=246.4, thus the value of P will be:
246.4=Pe^0.04t
P=(246.4)/(0.04t)
where t=time
Answer:
209.96
Step-by-step explanation:
The given function is [tex]f(t)=Pe^{rt}[/tex]
Given that f(4) = 246.4 when r = 0.04. Thus, we have
[tex]f(4)=Pe^{r(4)}\\\\246.4=Pe^{0.04\cdot4}[/tex]
Simplifying the exponent
[tex]246.4=Pe^{0.16}[/tex]
Now, divide both sides by [tex]e^{0.16}[/tex]
[tex]\frac{246.4}{e^{0.16}}=P\\\\P=209.97[/tex]
Hence, the approximate value of P is 209.96