Respuesta :

The answers are:

\sqrt{3}-3   ------> (g+f)(2)
0                ------> (f/g)(-1)
-3(sqrt)(3)  ------> (gxf)(2)
(sqrt)(15)   ------>  (g-f)(-1)
The correct answers are:
(1) [tex] \sqrt{3} - 3[/tex] ↔ (g+f)(2)
(2) 0 ↔  ([tex] \frac{f}{g} [/tex])(-1)
(3) [tex]-3 * \sqrt{3} [/tex] ↔ (g x f)(2)
(4) [tex]( \sqrt{15})[/tex] ↔ (g-f)(-1)

Explanation:
Box-1:

Step 1: Find (g + f)
[tex]( \sqrt{11 - 4x} + 1 - x^2)[/tex] --- (1)

Step 2: Now Plug in x = 2 in (1) gives you (g+f)(2):
[tex]( \sqrt{11 - 4*2} + 1 - 2^2)[/tex]
=> [tex] \sqrt{3} - 3[/tex]

Box-2:
Step 1: Find ([tex] \frac{f}{g} [/tex])
[tex] \frac{1-x^2}{ \sqrt{11 - 4x} } [/tex] --- (2)

Step 2: Now Plug in x = -1 in (2) gives you ([tex] \frac{f}{g} [/tex])(-1):
[tex]\frac{1-(-1)^2}{ \sqrt{11 - 4(-1)} } \\ \frac{0}{ \sqrt{15} } \\ 0[/tex]

Box-3:
Step 1: Find (f x g)
[tex](1-x^2) * ({ \sqrt{11 - 4x} })[/tex] --- (3)

Step 2: Now Plug in x = 2 in (3) gives you (g x f)(2):
[tex](1-(2)^2) * ({ \sqrt{11 - 4(2)} }) \\ -3 * \sqrt{3} [/tex]

Box-4:
Step-1: Find (g-f):
[tex]( \sqrt{11 - 4x} - 1 + x^2)[/tex] --- (4)
Step 2: Now Plug in x = -1 in (4) gives you (g-f)(-1):
[tex]( \sqrt{11 - 4(-1)} - 1 + (-1)^2) \\ ( \sqrt{15} - 1 + 1) \\ ( \sqrt{15})[/tex]