Respuesta :
Given that mean=56.1 and standard deviation=8.2, P(x>67.5) will be found as follows:
The z-score is given by:
z=(x-μ)/σ
thus the z-score will be given by:
z=(67.5-56.1)/8.2
z=11.4/8.2
z=1.39
thus
P(z=1.39)=0.9177
thus:
P(x>67.5)=1-P(z>0.9177)
=1-0.9177
=0.0823
Answer: A. 0.0823
The z-score is given by:
z=(x-μ)/σ
thus the z-score will be given by:
z=(67.5-56.1)/8.2
z=11.4/8.2
z=1.39
thus
P(z=1.39)=0.9177
thus:
P(x>67.5)=1-P(z>0.9177)
=1-0.9177
=0.0823
Answer: A. 0.0823
Answer: A. 0.0823
Step-by-step explanation:
Given : Mean [tex]\mu[/tex]=56.1
Standard deviation [tex]\sigma[/tex]=8.2
P(x>67.5) will be found as follows:
The z-score is given by:
[tex]z=\frac{X-\mu}{\sigma}[/tex]
Substitute the values of means ans standard deviation in it, we get
[tex]\Rightarrow\ z=\frac{67.5-56.1}{8.2}\\\\\Rightarrow\ z=\frac{11.4}{8.2}\\\Rightarrow\ z=1.39[/tex]
As
P(z<1.39)=0.9177
thus:
P(X>67.5)=1-P(z<1.39)
⇒P(X>67.5)=1-0.9177
∴P(X>67.5)=0.0823