Answer:
[tex]\displaystyle 10,7\:by\:the\:Law\:of\:Sines\:(SAS)[/tex]
Step-by-step explanation:
First, find the angle measure of C:
[tex]\displaystyle \\ \\ 180° = 65° + 21° + m∠C → 180° = 86° + m∠C \\ \\ 94° = m∠C[/tex]
Now that we have all three angles, we can proceed with the Law of Sines to solve for edge b:
[tex]\displaystyle \frac{c}{sin∠C} = \frac{b}{sin∠B} = \frac{a}{sin∠A} \\ \\ \frac{b}{sin\:21°} = \frac{27}{sin\:65°} → 10,676212625... = \frac{27sin\:21°}{sin\:65°} \\ \\ 10,7 ≈ b[/tex]
I am joyous to assist you at any time.