Respuesta :
[tex]\bf \begin{array}{ccccccccc}
&&x_1&&y_1\\
% (a,b)
&&(~ 0 &,& 0~)
\end{array}
\\\\\\
% slope = m
slope = m\implies \cfrac{1}{4}
\\\\\\
% point-slope intercept
\stackrel{\textit{point-slope form}}{y- y_1= m(x- x_1)}\implies y-0=\cfrac{1}{4}(x-0)\implies y=\cfrac{1}{4}x[/tex]
Answer:
[tex]y=\frac{1}{4}x+0[/tex]
Step-by-step explanation:
Since, the equation of the line that passes through a point [tex](x_1,y_1)[/tex] and having the slope m is,
[tex]y-y_1=m(x-x_1)[/tex]
Here, [tex]x_1=0[/tex] [tex]y_1=0[/tex] and [tex]m=\frac{1}{4}[/tex]
So, the equation of the line,
[tex]y-0=\frac{1}{4}(x-0)[/tex]
[tex]y=\frac{1}{4}x[/tex]
Since, the slope intercept form of a line is, y = mx +c,
Hence, the required slope-intercept equation is,
[tex]y=\frac{1}{4}x+0[/tex]