Respuesta :

We have the following expression:
 sqrt 8 / x ^ 6
 Rewriting we have:
 sqrt (8 / x ^ 6)
 sqrt (2 * 4 / ((x ^ 2) * (x ^ 2) * (x ^ 2)))
 (2 / (x * x * x)) sqrt (2)
 (2 / x ^ 3) * sqrt (2)
 Answer:
 
An equivalent expression is given by:
 
(2 / x ^ 3) * sqrt (2)

Equivalent expressions are expressions of equal value

The equivalent expression is: [tex]\mathbf{\frac{2\sqrt {2}}{x^3}}[/tex]

The expression is given as:

[tex]\mathbf{\sqrt{\frac{8}{x^6}}}[/tex]

Split

[tex]\mathbf{\sqrt{\frac{8}{x^6}} = \frac{\sqrt 8}{\sqrt{x^6}}}[/tex]

Expand

[tex]\mathbf{\sqrt{\frac{8}{x^6}} = \frac{\sqrt {4 \times 2}}{\sqrt{x^6}}}[/tex]

Evaluate the roots

[tex]\mathbf{\sqrt{\frac{8}{x^6}} = \frac{2\sqrt {2}}{x^3}}[/tex]

Hence, the equivalent expression is: [tex]\mathbf{\frac{2\sqrt {2}}{x^3}}[/tex]

Read more about equivalent expressions at:

https://brainly.com/question/24242989