Respuesta :

[tex] \bf \left[ \left( p^{-2}+\cfrac{1}{p} \right)^1 \right]^p\implies \left[ \left( \cfrac{1}{p^2}+\cfrac{1}{p} \right)^1 \right]^p\implies \left[ \left( \cfrac{1+p}{p^2} \right)^1 \right]^p\\\\\\\left( \cfrac{1+p}{p^2} \right)^{1\cdot p}\implies \left( \cfrac{1+p}{p^2} \right)^p\implies \stackrel{p=\frac{3}{4}}{\left( \cfrac{1+\frac{3}{4}}{\left( \frac{3}{4} \right)^2} \right)^{\frac{3}{4}}} [/tex]


[tex] \bf \sqrt[4]{\left( \cfrac{1+\frac{3}{4}}{\left( \frac{3}{4} \right)^2} \right)^3}\implies \sqrt[4]{\left( \cfrac{~~\frac{7}{4}~~}{\frac{9}{16}} \right)^3}\implies \sqrt[4]{\left( \cfrac{7}{4}\cdot \cfrac{16}{9} \right)^3}\implies \sqrt[4]{\left( \cfrac{28}{9} \right)^3} [/tex]


[tex] \bf \sqrt[4]{\cfrac{28^3}{9^3}}\implies \sqrt[4]{\cfrac{21952}{729}}\implies \cfrac{2\sqrt[4]{1372}}{3\sqrt[4]{3}}\\\\\\\cfrac{2}{3}\sqrt[4]{\cfrac{1372}{3}}\implies \stackrel{\textit{exponent form}}{\cfrac{2}{3}\left( \cfrac{1372}{3} \right)^{\frac{1}{4}}} [/tex]