Respuesta :

gmany

[tex]\left[\begin{array}{cccc}a_{11}&a_{12}&a_{13}&a_{14}\end{array}\right] \pm\left[\begin{array}{cccc}b_{11}&b_{12}&b_{13}&b_{14}\end{array}\right] \\\\=\left[\begin{array}{cccc}a_{11}\pm b_{11}&a_{12}\pm b_{12}&a_{13}\pm b_{13}&a_{14}\pm b_{14}\end{array}\right] \\\\---------------------------------[/tex]

[tex]A=\left[\begin{array}{cccc}a_{11}&a_{12}&a_{13}&a_{14}\end{array}\right] \\\\A+B=C\Rightarrow A=C-B\\\\\left[\begin{array}{cccc}a_{11}&a_{12}&a_{13}&a_{14}\end{array}\right] +\left[\begin{array}{cccc}11&17&-8&13\end{array}\right] =\left[\begin{array}{cccc}0&1&-2&3\end{array}\right]\\\\\left[\begin{array}{cccc}a_{11}&a_{12}&a_{13}&a_{14}\end{array}\right]=\left[\begin{array}{cccc}0&1&-2&3\end{array}\right]-\left[\begin{array}{cccc}11&17&-8&13\end{array}\right][/tex]

[tex]\left[\begin{array}{cccc}a_{11}&a_{12}&a_{13}&a_{14}\end{array}\right]=\left[\begin{array}{cccc}0-11&1-17&-2-(-8)&3-13\end{array}\right]\\\\\left[\begin{array}{cccc}a_{11}&a_{12}&a_{13}&a_{14}\end{array}\right]=\left[\begin{array}{cccc}-11&-16&6&-10\end{array}\right]\\\\a_{11}=-11\\\\a_{12}=-16\\\\a_{13}=6\\\\a_{14}=-10[/tex]