Respuesta :

Answer:

see explanation

Step-by-step explanation:

using the trigonometric identities

• sin2x = 2sinxcosx

• cos2x = 2cos²x - 1

• sin²x + cos²x = 1

sinx = ± [tex]\sqrt{1-cos^2x}[/tex]

       = ± [tex]\sqrt{1-(-12/15)^2}[/tex]

       = ± [tex]\sqrt{1-\frac{144}{225} }[/tex]

       = ± [tex]\sqrt{\frac{81}{225} }[/tex] = ± [tex]\frac{9}{15}[/tex]

since sinΘ > 0 then sinΘ = [tex]\frac{9}{15}[/tex] = [tex]\frac{3}{5}[/tex]

sin2Θ = 2 × [tex]\frac{3}{5}[/tex] × - [tex]\frac{12}{15}[/tex] = - [tex]\frac{24}{25}[/tex]

cos2Θ = 2 × (- [tex]\frac{12}{15}[/tex])² - 1

           = 2 × [tex]\frac{144}{225}[/tex] - 1

           = [tex]\frac{288}{225}[/tex] - 1 = [tex]\frac{63}{225}[/tex] = [tex]\frac{7}{25}[/tex]