Answer:
[tex]k(1.7m^2-6.5n^3)[/tex]
Step-by-step explanation:
We have been given an expression [tex]( \frac{5}{8}mn+1.4m^2k+0.3km^2-2.5n^3k)-( \frac{1}{2}mn+4kn^3+\frac{1}{8} mn)[/tex] and we are asked to simplify our given expression.
First of all we will remove parenthesis.
[tex]\frac{5}{8}mn+1.4m^2k+0.3km^2-2.5n^3k-\frac{1}{2}mn-4kn^3-\frac{1}{8} mn)[/tex]
Let us combine like terms.
[tex](\frac{5}{8}mn-\frac{1}{2}mn-\frac{1}{8} mn)+(1.4m^2k+0.3km^2)+(-2.5n^3k-4kn^3)[/tex]
Let us have a common denominator.
[tex](\frac{5}{8}mn-\frac{4}{8}mn-\frac{1}{8} mn)+(1.4m^2k+0.3km^2)+(-2.5n^3k-4kn^3)[/tex]
Upon combining like terms we will get,
[tex](\frac{5-4-1}{8}mn)+(1.7m^2k)+(-6.5n^3k)[/tex]
[tex](\frac{5-5}{8}mn)+1.7m^2k-6.5n^3k[/tex]
[tex](\frac{0}{8}mn)+1.7m^2k-6.5n^3k[/tex]
[tex]0+1.7m^2k-6.5n^3k[/tex]
Let us factor out k.
[tex]k(1.7m^2-6.5n^3)[/tex]
Therefore, our expression simplifies to [tex]k(1.7m^2-6.5n^3)[/tex].