Respuesta :

Hello!

The answer is:

[tex]x1=0.53\\x2=-0.17[/tex]

Why?

The quadratic formula is:

[tex]x=\frac{-b+-\sqrt{b^{2}-4*a*c } }{2*a}[/tex]

We have that:

[tex]a=11\\b=-4\\c=-1[/tex]

By substituting we have:

[tex]x=\frac{4+-\sqrt{-4^{2}-4*11*-1 } }{2*11}=\frac{4+-\sqrt{16+44} }{22}=\frac{4+-\sqrt{60} }{22}=\frac{4+-(7.75)}{22}[/tex]

[tex]x1=\frac{4+7.75}{22}=0.53\\\\x2=\frac{4-7.75}{22} =-0.17[/tex]

Have a nice day!

Answer:

x= 0.53 and x = -0.63

Step-by-step explanation:

Quadratic formula:- ax² + bx + c

x = [-b ± √(b² - 4ac)]/2

It is given that, quadratic equation 11x2 – 4x = 1

To find the value of x

11x2 – 4x = 1

⇒11x2 – 4x - 1 = 0

a = 11

b = -4

c = -1

x = [-b ± √(b² - 4ac)]/2

x = [-(-4) ± √((-4)² - 4*11*-1)]/2*11

x = [4±√(16 +44)]/22

x = [4±√(60)]/22

x = [4±7.7]/22

x= 0.53 and x = -0.63