write the expression without radicals, using only positive exponents

Answer:
[tex]\sqrt[3]{a^{2}+b^{2}}=(a^{2}+b^{2})^{\frac{1}{3}}[/tex]
Step-by-step explanation:
∵∛x = (x)^1/3
∴ [tex]\sqrt[3]{a^{2}+b^{2}}=(a^{2}+b^{2})^{\frac{1}{3}}[/tex]
So you can replace the radicals by fractional exponents
Answer:
The required expression is: [tex]\sqrt[3]{a^2+b^2}=(a^2+b^2)^{\frac{1}{3}[/tex].
Step-by-step explanation:
Consider the provided expression.
[tex]\sqrt[3]{a^2+b^2}[/tex]
Now use the property: [tex]\sqrt[n]{x+y}=(x+y)^{\frac{1}{n}}[/tex]
By using the above property the provided expression can be written as:
[tex]\sqrt[3]{a^2+b^2}=(a^2+b^2)^{\frac{1}{3}[/tex]
Therefore, the required expression is: [tex]\sqrt[3]{a^2+b^2}=(a^2+b^2)^{\frac{1}{3}[/tex].