Respuesta :

Answer:

[tex]\sqrt[3]{a^{2}+b^{2}}=(a^{2}+b^{2})^{\frac{1}{3}}[/tex]

Step-by-step explanation:

∵∛x = (x)^1/3

∴ [tex]\sqrt[3]{a^{2}+b^{2}}=(a^{2}+b^{2})^{\frac{1}{3}}[/tex]

So you can replace the radicals by fractional exponents

Answer:

The required expression is: [tex]\sqrt[3]{a^2+b^2}=(a^2+b^2)^{\frac{1}{3}[/tex].

Step-by-step explanation:

Consider the provided expression.

[tex]\sqrt[3]{a^2+b^2}[/tex]

Now use the property: [tex]\sqrt[n]{x+y}=(x+y)^{\frac{1}{n}}[/tex]

By using the above property the provided expression can be written as:

[tex]\sqrt[3]{a^2+b^2}=(a^2+b^2)^{\frac{1}{3}[/tex]

Therefore, the required expression is: [tex]\sqrt[3]{a^2+b^2}=(a^2+b^2)^{\frac{1}{3}[/tex].