For a proof by induction of the math statement below, identify the correct step for proving the theorem is true for n = k + 1.
1+3+5...+(2n-1)=n^2

Respuesta :

If [tex]n=1[/tex], then [tex]1=1^2[/tex] is true.

Suppose the equation holds for [tex]n=k[/tex], so that

[tex]1+3+5+\cdots+(2k-1)=k^2[/tex]

Then if [tex]n=k+1[/tex], we have

[tex]1+3+5+\cdots+(2k-1)+(2(k+1)-1)=k^2+(2k+1)=(k+1)^2[/tex]

as required, so the equation holds for all [tex]n\in\mathbb N[/tex].

Answer:k+1

Step-by-step explanation: