A mass is suspended on a vertical spring. Initially, the mass is in equilibrium. Then, it is pulled downward and released. The mass then moves up and down between the "top" and the "bottom" positions. By definition, the period of such motion is the time interval it takes the mass to move: Mark all the correct statements among those provided below. View Available Hint(s) Mark all the correct statements among those provided below. from the top position to the bottom. from the equilibrium position to the bottom. from the bottom position to the top. from the equilibrium position to the bottom and then back to the equilibrium. from the equilibrium position to the top and then back to the equilibrium. from the equilibrium position to the top. from the top position to the bottom and then back to the top. from the bottom position to the top and then back to the bottom.

Respuesta :

Answer:

1. From top to bottom and then back to top

2. From bottom to top and then back to bottom

Explanation:

As Time Period or periodic time period is time it takes to complete one complete cycle. So only these two options are correct. Yes ! If you assume a frictionless and isolated system then these two time intervals must be equal.

The motion of the suspended mass is simple harmonic motion; from the bottom position, then to equilibrium position, and then to the top position.

Period of simple harmonic motion

The period of a particle undergoing simple harmonic motion is defined as the time taken for the particle to complete one complete oscillation.

Motion of the vibrating body

A mass suspended on a vertical spring and allowed to attain equilibrium. When, it is pulled downward and released, the mass begins to oscillate by moving up and down between the "top" and the "bottom" position.

The motion of the object is as follows:

  • It goes to the bottom position.
  • then to equilibrium position,
  • then to the top position

The motion of the suspended mass is simple harmonic motion; from the bottom position, then to equilibrium position, and then to the top position.

Learn more about simple harmonic motion at: https://brainly.com/question/24646514