Write an equation in standard form of an ellipse that is 50 units high and 40 units wide. The center of the ellipse is (0,0).

Respuesta :

Answer:

[tex]\frac{x^2}{400}+\frac{y^2}{625}=1[/tex]

Step-by-step explanation:

The equation of an ellipse that has its center at the origin is given by the formula:

[tex]\frac{x^2}{b^2}+\frac{y^2}{a^2}=1[/tex]

The given ellipse is 50 units high.

This means that length of the major axis is 50.

[tex]2a=50[/tex]

[tex]2\implies a=25[/tex]

The ellipse is 40 units wide.

[tex]2b=40[/tex]

[tex]\implies b=20[/tex]

We substitute these values into the formula to get:

[tex]\frac{x^2}{20^2}+\frac{y^2}{25^2}=1[/tex]

[tex]\frac{x^2}{400}+\frac{y^2}{625}=1[/tex]

Ver imagen kudzordzifrancis