Answer:
T = 2.5 lb
N= -0.33 lb
Explanation:
given
r = 9 in
[tex]\dot{r} =-3.6 in/s and\ \ddot{r} = 0[/tex]
[tex]\dot{\theta} = 6.3\ rad/s and\ \ddot{\theta} = 2.1\ rad/s^2[/tex]
[tex]-T = m a_r = m(\ddot{r} -r{\dot{\theta}^2)[/tex]
[tex]N= m a_{\theta} = m(r\ddot{\theta}+2\dot{r}\dot{\theta}})[/tex]
[tex]T= mr{\dot{\theta}^2 = \frac{3}{386.4}(9)(6)^2 =2.5lb[/tex]
[tex]N= m(r\ddot{\theta}+2\dot{r}\dot{\theta}})=\frac{3}{386.4}[9(-2)+2(-2)(6)]=-0.326 lb[/tex]