Respuesta :
Answer:
[tex]\omega _{f}=0.3107rad/sec[/tex]
partb) [tex]\omega _{f}=14.93rad/sec[/tex]
Explanation:
Since the system is isolated it's angular momentum shall be conserved
[tex]L_{system}=I_{system}\omega \\\\I_{system}=I_{rod}+2\times m\times r^{2}\\\\I_{system}=\frac{1}{12}ml^{2}+2\times 0.2\times (4.8\times 10^{-2})^{2}\\\\I_{system}=1.22845\times 10^{-3}kgm^{2}\\\\L_{system}=1.22845\times 10^{-3}kgm^{2}\times 3.66rad/sec[/tex]
[tex]\L_{system}=4.496\times 10^{-3}kgm^{2}[/tex]
Now the final angular momentum of the system
[tex]L_{fianl}=I_{final}\omega \\\\I_{final}=I_{rod}+2\times m\times r_{f}^{2}\\\\I_{final}=\frac{1}{12}ml^{2}+2\times 0.2\times (0.19)^{2}\\\\I_{final}=0.01447kgm^{2}\\\\L_{final}=0.01447kgm^{2}\times \omega _{final}rad/sec[/tex]
Thus equating initial and final angular momentum we solve for final angular velocity of rod as
[tex]\omega _{f}=\frac{4.496\times 10^{-3}}{0.01447}\\\\\omega _{f}=0.3107rad/sec[/tex]
part b)
When the rings leave the system we again conserve the angular momentum just before the rings leave the system and the instant when they just leave
[tex]\therefore 0.01447=\frac{1}{12}ml^{2}w\\\\\therefore w=\frac{4.582\times 10^{-3}}{3.068\times10^{-4} }\\\\w_{final}=14.93rad/sec[/tex]
Answer:
A)[tex]\omega_{f}=2.92\frac{rev}{min}[/tex].
B)[tex]\omega_{f}=140\frac{rev}{min}[/tex].
Explanation:
A)
For this problem, we will use the conservation of angular momentum.
[tex]L_{0}=L_{f}\\[/tex].
In the beginning, we have that
[tex]L_{0}=I_{0}\omega_{0}\\[/tex]
where [tex]I_{0}[/tex] is the inertia moment of all the system at the starting position, this is the inertia moment of the rod plus the inertia moment of each ring ([tex]mr^{2}[/tex], with [tex]r[/tex] the distance from the ring to the fixed axis and, [tex]m[/tex] its mass) at the starting position and, [tex]\omega_{0}[/tex] is the initial angular velocity. So
[tex]L_{0}=(\frac{1}{12}Ml^{2}+2mr_{0}^{2})\omega_{0}[/tex].
When the rings are at the ends of the rod the angular momentum becomes
[tex]L_{f}=(\frac{1}{12}Ml^{2}+2mr_{f}^{2})\omega_{f}[/tex],
where [tex]r_{f}[/tex] is the distance from the fixed axis to the end of the rod (the final position of the rings).
Using conservation of angular momentum we get
[tex](\frac{1}{12}Ml^{2}+2mr_{0}^{2})\omega_{0}=(\frac{1}{12}Ml^{2}+2mr_{f}^{2})\omega_{f}[/tex].
thus
[tex]\omega_{f}=\frac{(\frac{1}{12}Ml^{2}+2mr_{0}^{2})\omega_{0}}{(\frac{1}{12}Ml^{2}+2mr_{f}^{2})}[/tex]
computing this last expresion we get
[tex]\omega_{f}=\frac{(\frac{1}{12}(2.55*10^{-2})(0.380)^{2}+2(0.200)(4.80*10^{-2})^{2})(35.0)}{(\frac{1}{12}(2.55*10^{-2})(0.380)^2+2(0.200)(0.19)^{2})}[/tex]
[tex]\omega_{f}=2.92\frac{rev}{min}[/tex].
B)
Again we use the conservation of angular momentum. The initial angular momentum if the same as before. The final angular momentum will be
[tex]L_{f}=(\frac{1}{12}Ml^{2})\omega_{f}[/tex],
this time we will not take into account the inertia moment of the rings because they are no longer part of the system (they leave the rod).
[tex](\frac{1}{12}Ml^{2}+2mr_{0}^{2})\omega_{0}=(\frac{1}{12}Ml^{2})\omega_{f}[/tex].
thus
[tex]\omega_{f}=\frac{(\frac{1}{12}Ml^{2}+2mr_{0}^{2})\omega_{0}}{(\frac{1}{12}Ml^{2})}[/tex]
computing this last expresion we get
[tex]\omega_{f}=\frac{(\frac{1}{12}(2.55*10^{-2})(0.380)^{2}+2(0.200)(4.80*10^{-2})^{2})(35.0)}{(\frac{1}{12}(2.55*10^{-2})(0.380)^2})[/tex]
[tex]\omega_{f}=140\frac{rev}{min}[/tex].