contestada

A coil is wrapped with 300 turns of wire on the perimeter of a square frame (side length = 20 cm). Each turn has the same area as the frame, and the total resistance of the coil is 1.5 Ω. A uniform magnetic field perpendicular to the plane of the coil changes in magnitude at a constant rate from 0.50 T to 0.90 T in 2.0 s. What is the magnitude of the induced emf in the coil while the field is changing?

Respuesta :

Answer:

EMF = 2.4 V

Explanation:

As we know by Lenz law that induced EMF is given by rate of change in magnetic flux in the coil

As we know that magnetic flux is given by

[tex]\phi = NBA[/tex]

here we know that

[tex]N = 300[/tex]

[tex]Area = 0.20 \times 0.20 = 0.04 m^2[/tex]

now we for induced EMF we have

[tex]EMF = NA\frac{dB}{dt}[/tex]

here we have

[tex]EMF = (300)(0.04)(\frac{0.90 - 0.50}{2})[/tex]

[tex]EMF = 2.4 V[/tex]