Answer:
[tex]3x - y = - 2[/tex]
Step-by-step explanation:
The given line PQ passes through the points P(-5,-13) and Q(5,17) .
Find the slope using the formula:
[tex]m = \frac{y_2-y_1}{x_2-x_1} [/tex]
Plug in the points to get:
[tex]m = \frac{17 - - 13}{5 - - 5} [/tex]
[tex]m = \frac{30}{10} [/tex]
[tex]m = 3[/tex]
Use the point-slope formula :
[tex]y-y_1 = m(x - x_1)[/tex]
Substitute the point (5,17)
[tex]y - 17 = 3(x - 5)[/tex]
Expand:
[tex]y - 17 = 3x - 15[/tex]
The standard form is when the equation is put in the form
[tex]ax + by = c[/tex]
Regroup the terms to get:
[tex]3x - y = - 17 + 15[/tex]
The standard form is
[tex]3x - y = - 2[/tex]