A 450.0 mL sample of a 0.242 M solution of silver nitrate is mixed with 400.0 mL of 0.200 M calcium chloride. What is the concentration of Cl- in solution after the reaction is complete?

Respuesta :

Answer:

0.538 M of Cl- in solution

Explanation:

First we need the balanced reaction:

2AgNO3 + CaCl2  ⇒  Ca(NO3)2 + 2AgCl

Then , we calculate mol of Ag in the reaction.

mol Ag=  450mL * (0.242 molAgNO3/ 1000mL) = 0.1089 mol AgNO3

Now, how many moles of CaCl2 we need to react with 0.1089 mol AgNO3? We take this information, from balanced reaction.  

0.1089 mol AgNO3* (1 mol CaCl2/ 2 mol AgNO3) = 0.05445 mol CaCl2

We just need 0.054 mol CaCl2,  and the rest of CaCl2 remain in solution.

so,

0.08 mol CaCl2 - 0.05445 mol CaCl2 = 0.0256 mol CaCl2 in excess,

Now, how many moles of Cl- are in 0.0256 mol of CaCl2?

0.0256 mol CaCl2* 2 mol Cl-/1mol CaCl2= 0.0511 mol Cl-

Molarity Cl- = Moles Cl-/ Volumen (L)

V (L) = (450 mL + 400 mL) * (1L/ 1000 mL) = 0.950 L

M = 0.0511mol Cl-/ 0.950 L = 0.538 M

Chlorides help compensate around 0.05 percent of the earth's mantle. Freshwater usually contains chloride concentrations range from 1 - 100 ppm (parts per million). Ionic compounds are soluble in water in subterranean aquifers, which are geological structures that hold groundwater, and further calculation can be defined as follows:

Calculating the [tex]\bold{AgNO_3}[/tex] volume:

[tex]\to \bold{V = 450.0 \ mL = 0.45\ L}\\\\[/tex]

Calculating the number of mol in [tex]\bold{AgNO_3}[/tex]:

[tex]\to \bold{n = Molarity \times Volume}[/tex]

        [tex]= 0.242 \times 0.45\\\\= 0.1089\ mol[/tex]

Calculating the [tex]\bold{[CaCl_2]}[/tex] volume:

[tex]\to \bold{V = 400.0 \ mL= 0.4 \ L}\\\\[/tex]  

Calculating the number of mol in [tex]\bold{[CaCl_2]}[/tex]:

[tex]\to \bold{n = Molarity \times Volume}[/tex]

        [tex]= 0.2\times 0.4\\\\= 8 \times 10^{-2}\ mol[/tex]

Balancing equation:

[tex]2 AgNO_3 + CaCl_2 \longrightarrow 2 AgCl + Ca(NO_3)_2[/tex]

When 2 mol of [tex]\bold{AgNO_3}[/tex] reacts with 1 mol of [tex]\bold{[CaCl_2]}[/tex]   for 0.1089 mol of [tex]\bold{AgNO_3}[/tex]  [tex]6.638 \times 10^{-2}[/tex] mol of [tex]\bold{[CaCl_2]}[/tex]  is required  But we have [tex]8 \times 10^{-2}[/tex]mol of [tex]\bold{[CaCl_2]}[/tex]   so, [tex]\bold{AgNO_3}[/tex] is limiting reagent  From balanced chemical reaction, we see that  when 2 mol of [tex]\bold{AgNO_3}[/tex] reacts, 1 mol of [tex]\bold{[CaCl_2]}[/tex]  reacts.

Calculating reacted mol of [tex]\bold{[CaCl_2]}[/tex] [tex]= (\frac{1}{2})\times AgNO_3\ mole[/tex]

                                                            [tex]= (\frac{1}{2})\times 0.1089\\\\=0.05445\\\\= 5.445\times 10^{-2}\ mol[/tex]

Calculating remaining mol of [tex]\bold{[CaCl_2]}[/tex] = [tex]\text{initially presented mol - reacted mol }[/tex]

                                                                [tex]= 8\times 10^{-2} - 5.445 \times 10^{-2} \\\\= 2.555 \times 10^{-2} mol[/tex]

Calculating the total volume:

[tex]\bold{= 450.0\ mL + 400.0 \ mL}\\\\ \bold{= 850.0\ mL}[/tex]

Calculating the remaining [tex]\bold{[CaCl_2]}[/tex] [tex]=\frac{ \text{remaining mol of}\ CaCl_2}{ volume}[/tex]

                                                           [tex]=\frac{2.555 \times 10^{-2}\ mol}{ 0.850\ L}\\\\= 0.0217175\ M[/tex]

Calculating the remaining [tex]\bold{[Cl^{-}] }[/tex] :

[tex]\bold{= 2 \times 0.0217175\ M}\\\\ \bold{= 0.043435\ M}[/tex]

Learn more:

brainly.com/question/6917019