Which values of c will cause the quadratic equation –x2 + 3x + c = 0 to have no real number solutions? Check all that apply.

–5
negative nine-halves
negative one-quarter
1
StartFraction 9 Over 4 EndFraction

Respuesta :

Answer:

-5

negative nine-halves

Step-by-step explanation:

we know that

In the quadratic equation [tex]ax^{2} +bx+c=0[/tex]

If [tex]b^{2}-4ac < 0[/tex]

then

The system has no real numbers solutions

we have

[tex]-x^{2} +3x+c=0[/tex]

so

[tex]a=-1,b=3[/tex]

substitute

[tex]3^{2}-4(-1)c < 0[/tex]

[tex]9+4c < 0[/tex]

[tex]c < -\frac{9}{4}[/tex]

Verify each case

case 1) -5

For c=-5

substitute

[tex]-5 < -\frac{9}{4}[/tex]

[tex]-20 < 9[/tex] ------> is true

therefore

The value of c=-5 will cause the quadratic equation  to have no real number solutions

case 2) negative nine-halves

For c=-9/2

substitute

[tex]-9/2 < -\frac{9}{4}[/tex]

[tex]-36 < -18[/tex] ------> is true

therefore

The value of c=-9/2 will cause the quadratic equation  to have no real number solutions

case 3) negative one-quarter

For c=-1/4

substitute

[tex]-1/4 < -\frac{9}{4}[/tex]

[tex]-4 < -36[/tex] ------> is not true

therefore

The value of c=-1/4 will not cause the quadratic equation  to have no real number solutions

case 4) 1

For c=1

substitute

[tex]1 < -\frac{9}{4}[/tex] ------> is not true

therefore

The value of c=1 will not cause the quadratic equation  to have no real number solutions

case 5) 9 Over 4

For c=9/4

substitute

[tex]9/4< -\frac{9}{4}[/tex] ------> is not true

therefore

The value of c=9/4 will not cause the quadratic equation  to have no real number solutions

Answer:

-5 and -9/2

Step-by-step explanation:

Just did it