Respuesta :

[tex]\bf ~~~~~~~~~~~~\textit{function transformations} \\\\\\ f(x)=Asin(Bx+C)+D \qquad \qquad f(x)=Acos(Bx+C)+D \\\\ f(x)=Atan(Bx+C)+D \qquad \qquad f(x)=Asec(Bx+C)+D \\\\[-0.35em] ~\dotfill\\\\ \bullet \textit{ stretches or shrinks}\\ ~~~~~~\textit{horizontally by amplitude } A\cdot B\\\\ \bullet \textit{ flips it upside-down if }A\textit{ is negative}\\ ~~~~~~\textit{reflection over the x-axis} \\\\ \bullet \textit{ flips it sideways if }B\textit{ is negative}\\[/tex]

[tex]\bf ~~~~~~\textit{reflection over the y-axis} \\\\ \bullet \textit{ horizontal shift by }\frac{C}{B}\\ ~~~~~~if\ \frac{C}{B}\textit{ is negative, to the right}\\\\ ~~~~~~if\ \frac{C}{B}\textit{ is positive, to the left}\\\\ \bullet \textit{vertical shift by }D\\ ~~~~~~if\ D\textit{ is negative, downwards}\\\\ ~~~~~~if\ D\textit{ is positive, upwards}[/tex]

[tex]\bf \bullet \textit{function period}\\ ~~~~~~\frac{2\pi }{B}\ for\ cos(\theta),\ sin(\theta),\ sec(\theta),\ csc(\theta)\\\\ ~~~~~~\frac{\pi }{B}\ for\ tan(\theta),\ cot(\theta)[/tex]

now, with that template in mind

[tex]\bf y = sin\left( x - \frac{3\pi }{2} \right)\implies y = \stackrel{A}{1}sin\left( \stackrel{B}{1}x \stackrel{C}{- \frac{3\pi }{2}} \right)+\stackrel{D}{0} \\\\\\ C = -\cfrac{3\pi }{2}\qquad \qquad \textit{\underline{horizontal shift} to the right of }\stackrel{3\pi }{2}\textit{ units}[/tex]