Consider the quadratic function:

f(x) = x2 – 8x – 9



Vertex: (StartFraction negative b Over 2 a EndFraction, f (StartFraction negative b Over 2 a))

What is the vertex of the function?

(
,
)

Respuesta :

Answer:

vertex = (4, - 25 )

Step-by-step explanation:

Given a quadratic function in standard form : f(x) = ax² + bx + c : a ≠ 0

The the x- coordinate of the vertex is

[tex]x_{V}[/tex] = - [tex]\frac{b}{2a}[/tex]

f(x) = x² - 8x - 9 ← is in standard form

with a = 1, b = - 8, thus

[tex]x_{V}[/tex] = - [tex]\frac{-8}{2}[/tex] = 4

Substitute x = 4 into f(x) for corresponding value of y

f(4) = 4² - 8(4) - 9 = 16 - 32 - 9 = - 25

vertex = (4, - 25 )

Answer:

vertex is (4,-25)

Step-by-step explanation:

[tex]f(x) = x^2 - 8x - 9[/tex]

To find out the vertex we use formula

[tex]x=\frac{-b}{2a}[/tex]

From the given f(x), the value of a=1, b=-8 and c=-9

Plug in the values in the formula

[tex]x=\frac{-(-8)}{2(1)}[/tex]

x=4

Now find the value of y

plug in 4 for x in f(x)

[tex]f(4) = 4^2 - 8(4)- 9=-25[/tex]

The value of y is -25

The vertex is (4,-25)