Find the standard form of the equation of the ellipse satisfying the following conditions. Major axis vertical with length 14​; length of minor axisequals10​; ​center: ​(negative 7​,3​)

Respuesta :

Answer:

The answer to your question is below

Step-by-step explanation:

Data

Mayor axis vertical = 14

Minor axis = 10

Center = (-7, 3)

Formula

Mayor axis = 2a

Minor axis = 2b

[tex]\frac{(x-h)^{2} }{b^{2} }  + \frac{(y - k)^{2} }{a^{2} }  = 1[/tex]

Process

                2a = 14                             2b = 10

                  a = 7                               b = 5

                   h = -7     k = 3

Substitution

[tex]\frac{(x+7)^{2} }{5^{2} }  + \frac{(y - 3)^{2} }{7^{2} }  = 1[/tex]