Answer:
[tex]\left[\begin{array}{cc}2&0\\-2&3\end{array}\right]+\left[\begin{array}{cc}0&0\\0&0\end{array}\right]=\left[\begin{array}{cc}2&0\\-2&3\end{array}\right][/tex]
Step-by-step explanation:
If you have two matrices:
[tex]A=\left[\begin{array}{cc}a&b\\c&d\end{array}\right]\\and\\B=\left[\begin{array}{cc}e&f\\g&h\end{array}\right]\\\\\\A+B=\left[\begin{array}{cc}a+e&b+f\\c+g&d+h\end{array}\right][/tex]
We have:
[tex]A=\left[\begin{array}{cc}2&0\\-2&3\end{array}\right]\\ and\\B=\left[\begin{array}{cc}0&0\\0&0\end{array}\right]\\\\\\A+B=\left[\begin{array}{cc}2&0\\-2&3\end{array}\right]+\left[\begin{array}{cc}0&0\\0&0\end{array}\right]\\\\\\A+B=\left[\begin{array}{cc}2+0&0+0\\-2+0&3+0\end{array}\right]\\\\\\A+B=\left[\begin{array}{cc}2&0\\-2&3\end{array}\right][/tex]
The sum between the two matrices is:
[tex]\left[\begin{array}{cc}2&0\\-2&3\end{array}\right]+\left[\begin{array}{cc}0&0\\0&0\end{array}\right]=\left[\begin{array}{cc}2&0\\-2&3\end{array}\right][/tex]