For a reaction with an activation energy of 52.0 kilojoules per mole and at a temperature of 35°C find the pre-exponential factor if the rate constant is 0.158 A) 0.161 В) 1.03 x 10% C) 6.42 x 1076 10 D) 2.42 x 10% E) 6.71 x 106

Respuesta :

Answer:

[tex]A=1.03\times 10^8[/tex]

Explanation:

Using the expression,

[tex]\ln {k}=ln\ A-\dfrac{E_{a}}{RT}[/tex]

Wherem  

[tex]k\ is\ the\ rate\ constant\ at\ T[/tex]

[tex]E_a[/tex] is the activation energy

A is the pre-exponential factor

R is Gas constant having value = 8.314 J / K mol  

Thus, given that, [tex]E_a[/tex] = 52.0 kJ/mol = 52000 J/mol (As 1 kJ = 1000 J)

[tex]k=0.158[/tex]

[tex]T=35\ ^0C[/tex]  

The conversion of T( °C) to T(K) is shown below:

T(K) = T( °C) + 273.15  

So,  

T = (35 + 273.15) K = 308.15 K  

Thus, applying values as:

[tex]\ln {0.158}=ln\ A-\dfrac{52000}{8.314\times 308.15}[/tex]

[tex]A=e^{\ln \left(0.158\right)+\frac{52000}{8.314\cdot \:308.15}}[/tex]

[tex]A=103161576.82851=1.03\times 10^8[/tex]