Respuesta :
Answer:
a) P(X=2)= 0.29
b) P(X<2)= 0.59
c) P(X≤2)= 0.88
d) P(X>2)= 0.12
e) P(X=1 or X=4)= 0.24
f) P(1≤X≤4)= 0.59
Step-by-step explanation:
a) P(X=2)= 1 - P(X=0) - P(X=1) - P(X=3) - P(X=4)= 1-0.41-0.18-0.06-0.06= 0.29
b) P(X<2)= P(X=0) + P(X=1)= 0.41 + 0.18 = 0.59
c) P(X≤2)= P(X=0) + P(X=1) + P(X=2)=0.41+0.18+0.29= 0.88
d) P(X>2)=P(X=3) + P(X=4)=0.06+0.06= 0.12
e) P(X=1 or X=4)=P(X=1 ∪ X=4) = P(X=1) + P(X=4)=0.18+0.06= 0.24
f) P(1≤X≤4)=P(X=1) + P(X=2) + P(X=3) + P(X=4)=0.18+0.29+0.06+0.06= 0.59
Answer:
a) P(X = 2) = 0.29
b) P(X < 2) = 0.59
c) P(X ≤ 2) = 0.88
d) P(X > 2) = 0.12
e) P(X = 1 or X = 4) = 0.24
f) P(1 ≤ X ≤ 4) = 0.59
Step-by-step explanation:
We have the following probability distribution:
P(X = 0) = 0.41
P(X = 1) = 0.18
P(X = 2) = p
P(X = 3) = 0.06
P(X = 4) = 0.06
a. P(X = 2) =
The sum of all those probabilities is decimal 1. So
0.41 + 0.18 + p + 0.06 + 0.06 = 1
p = 1 - 0.71
p = 0.29
P(X = 2) = 0.29
b. P(X < 2) =
P(X < 2) = P(X = 0) + P(X = 1) = 0.41 + 0.18 = 0.59
c. P(X ≤ 2) =
P(X ≤ 2) = P(X = 0) + P(X = 1) + P(X = 2) = 0.41 + 0.18 + 0.29 = 0.88
d. P(X > 2) =
P(X > 2) = P(X = 3) + P(X = 4) = 0.06 + 0.06 = 0.12.
e. P(X = 1 or X = 4) =
P(X = 1 or X = 4) = P(X = 1) + P(X = 4) = 0.18 + 0.06 = 0.24
f. P(1 ≤ X ≤ 4) =
P(1 ≤ X ≤ 4) = P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) = 0.18 + 0.29 + 0.06 + 0.06 = 0.59