Answer:
V(t)= [tex]\frac{4\pi }{3} (36+0.02t)^{3}[/tex]
337 706, 83 [tex]in^{3}[/tex]
Step-by-step explanation:
The volume of a sphere is [tex]V=\frac{4\pi }{3} r^{3}[/tex]
So like the initial radius is 36 and is increasing of 0.02 every second, we define the radius:
r= 36+0.02t
So, we replace in the formula of the volume and we obtain
[tex]V(t)= \frac{4\pi }{3} (36+0.02t)^{3}[/tex]
and if we replace t= 360 seconds in the equation of volume, we get
[tex]V(360)= \frac{4\pi }{3} (36+(0.02*360))^{3}[/tex]
[tex]V(360)=337 706, 83 in^{3}[/tex]