Respuesta :

Answer:

The area of   parallelogram ABCD  is[tex]78.42 \mathrm{in}^{2}[/tex]

Explanation:

Given:

AD = 12 in

[tex]m \angle C=46^{\circ}[/tex]

[tex]m \angle D B A=72^{\circ}[/tex]

To Find:

The area of   parallelogram ABCD=?  

Solution:

When we construct the parallelogram with the given data, we get a parallelogram formed by 12 cm as one side and an angle with 46 degrees.  

The area of the parallelogram can be calculated by [tex]a b * \sin (a n g l e)[/tex]

Substituting the value of a=12  we have

[tex]\text { Area of parallelogram }=12 * \text { bsin } 46[/tex]

To find  the value of b,

We know that area of a triangle can be expressed as,

[tex]\text { Area of triangle }=(A b / 2) \sin (\text {angle})[/tex]

So,

[tex](12 * B D / 2) * \sin 46=(A B * B D / 2) * \sin 72[/tex]

Cancelling BD and 2 on both sides we get,  

[tex]12 * \sin 46=A B * \sin 72[/tex]

[tex]A B=12 * \frac{\sin 46}{\sin 72}[/tex]

Therefore,

[tex]b=\frac{12 \sin 46}{\sin 72}[/tex]

Substituting the value of b,

[tex]=12 *\left(\frac{12 \sin 46}{\sin 72}\right) * \sin 46[/tex]

=78.42  

So the area of the parallelogram is[tex]78.42 \mathrm{in}^{2}[/tex]

Answer:I need to see the problem

Step-by-step explanation: