A jar contains n nickels and d dimes. There are 18 coins in the jar, and the total value of the coins is $1.15. How many nickels and how many dimes are in the jar? (Hint: Nickels are worth $0.05 and dimes are worth $0.10.)


There are....... nickels and .....dimes in the jar.?

Respuesta :

Answer:

There are 13 nickels and 5 dimes in the jar.

Step-by-step explanation:

Total number of coins = 18

Number of nickels =[tex]n[/tex]

Number of dimes = [tex]d[/tex]

Therefore [tex]n+d=18[/tex]

Total value of coins = $1.15

Value of [tex]n[/tex] nickels = $[tex]0.05n[/tex]

Values of [tex]d[/tex] dimes = $[tex]0.10d[/tex]

therefore [tex]0.05n+0.10d=1.15[/tex]

We have a system of equation to solve

(1) [tex]n+d=18[/tex]

(2) [tex]0.05n+0.10d=1.15[/tex]

Multiplying equation (2) with [tex]-10[/tex]

[tex]-0.5n-d=-11.5[/tex]

Now adding it to equation (1)

       [tex]n+d=18[/tex]

[tex]-0.5n-d=-11.5[/tex]

We get [tex]0.5n=6.5[/tex]

Dividing both sides by [tex]0.5[/tex]

[tex]\frac{0.5n}{0.5}=\frac{6.5}{0.5}[/tex]

∴ [tex]n=13[/tex]

Plugging value of [tex]n[/tex] in equation (1).

[tex]13+d=18[/tex]

Subtracting both sides by 13.

[tex]13+d-13=18-13[/tex]

∴ [tex]d=5[/tex]

Therefore there are 13 nickels and 5 dimes in the jar.

Otras preguntas