The price of a certain computer stock t days after it is issued for sale is p(t)=100+20t−6t^2 dollars. The price of the stock initially rises, but eventually begins to fall. During what period of time does the stock price rise?
0 < t < ____?
If you owned the stock, after how many days would you sell it? ____ days

Respuesta :

Answer:

0 < t < [tex]\frac{5}{3}[/tex]

After 1.67 days the stocks would be sold out.

Step-by-step explanation:

The price of a certain computer stock after t days is modeled by

p(t) = 100 + 20t - 6t²

Now we will take the derivative of the given function and equate it to zero to find the critical points,

p'(t) = 20 - 12t = 0

t = [tex]\frac{20}{12}[/tex]

t = [tex]\frac{5}{3}[/tex] days

Therefore, there are two intervals in which the given function is defined

(0, [tex]\frac{5}{3}[/tex]) and ([tex]\frac{5}{3}[/tex], ∞)

For the interval (0, [tex]\frac{5}{3}[/tex]),

p'(1) = 20 - 12(1) = 20

For the interval ([tex]\frac{5}{3}[/tex], ∞),

p'(2) = 20 - 12(2) = -4

Positive value of p'(t) in the interval (0, [tex]\frac{5}{3}[/tex]) indicates that the function is increasing.

0 < t < [tex]\frac{5}{3}[/tex]

Since at the point t = 1.67 days curve is showing the maximum, so the stocks should be sold after 1.67 days.