iriesm
contestada

What are the solutions to the following system? StartLayout Enlarged left-brace 1st row negative 2 x squared + y = negative 5 2nd row y = negative 3 x squared + 5 EndLayout (0, 2) (1, –2) (StartRoot 2 EndRoot, negative 1) and (negative StartRoot 2 EndRoot, negative 1) (StartRoot 5 EndRoot, negative 10) and (negative StartRoot 5 EndRoot, negative 10)

Respuesta :

Answer:

[tex](\sqrt{2},-1),(-\sqrt{2},-1)[/tex]

(StartRoot 2 EndRoot, negative 1) and (negative StartRoot 2 EndRoot, negative 1)

Step-by-step explanation:

we have

[tex]-2x^{2} +y=-5[/tex] ----> equation A

[tex]y=-3x^{2} +5[/tex] -----> equation B

solve by substitution

substitute equation B in equation A

[tex]-2x^{2} +(-3x^{2} +5)=-5[/tex]

solve for x

[tex]-5x^{2} +5=-5[/tex]

[tex]-5x^{2}=-10[/tex]

[tex]x^{2}=2[/tex]

[tex]x=\pm\sqrt{2}[/tex]

Find the value of y

[tex]y=-3x^{2} +5[/tex]

For [tex]x=\sqrt{2}[/tex] ----> [tex]y=-3(\sqrt{2})^{2} +5=-1[/tex]

For [tex]x=-\sqrt{2}[/tex] ----> [tex]y=-3(-\sqrt{2})^{2} +5=-1[/tex]

therefore

The solutions are

[tex](\sqrt{2},-1),(-\sqrt{2},-1)[/tex]

(StartRoot 2 EndRoot, negative 1) and (negative StartRoot 2 EndRoot, negative 1)

Answer:

answer is C. on edgenuty. Good luck. I might fail and repeat junior year bc im so behind

Step-by-step explanation: