Respuesta :
Answer:
[tex](\sqrt{2},-1),(-\sqrt{2},-1)[/tex]
(StartRoot 2 EndRoot, negative 1) and (negative StartRoot 2 EndRoot, negative 1)
Step-by-step explanation:
we have
[tex]-2x^{2} +y=-5[/tex] ----> equation A
[tex]y=-3x^{2} +5[/tex] -----> equation B
solve by substitution
substitute equation B in equation A
[tex]-2x^{2} +(-3x^{2} +5)=-5[/tex]
solve for x
[tex]-5x^{2} +5=-5[/tex]
[tex]-5x^{2}=-10[/tex]
[tex]x^{2}=2[/tex]
[tex]x=\pm\sqrt{2}[/tex]
Find the value of y
[tex]y=-3x^{2} +5[/tex]
For [tex]x=\sqrt{2}[/tex] ----> [tex]y=-3(\sqrt{2})^{2} +5=-1[/tex]
For [tex]x=-\sqrt{2}[/tex] ----> [tex]y=-3(-\sqrt{2})^{2} +5=-1[/tex]
therefore
The solutions are
[tex](\sqrt{2},-1),(-\sqrt{2},-1)[/tex]
(StartRoot 2 EndRoot, negative 1) and (negative StartRoot 2 EndRoot, negative 1)
Answer:
answer is C. on edgenuty. Good luck. I might fail and repeat junior year bc im so behind
Step-by-step explanation: