contestada

a 1.6 kg block on a horizontal frictionless surface is attached to an ideal massless spring whose spring constant is 190 N/m. The block is pulled from its equilibrium position at x= 0.00m to a displacement x = +0.080 m and is released from rest. The block then executes simple harmonic motion along the horizontal x-axis.

a) what is the velocity of the block at time t = 0.40s?

b) what is the period of the motion?

Respuesta :

Answer:

Explanation:

Given

mass of block [tex]m=1.6 kg[/tex]  

Spring constant [tex]k=190 N/m[/tex]  

initial displacement [tex] x_i=0.08 m[/tex]  

Initial displacement is maximum displacement therefore

[tex] A=0.08 m[/tex]  

General equation of motion of SHM is

[tex] x=A\cos \omega t[/tex]  

where [tex]A=maximum\ amplitude[/tex]  

[tex]\omega =Natural\ frequency\ of\ oscillation[/tex]  

[tex]\omega =\sqrt{\frac{k}{m}}=\sqrt{\frac{190}{1.6}}=10.89[/tex]  

differentiating x we get velocity which is given by

[tex]v=-A\omega \sin \omega t[/tex]  

velocity at [tex]t=0.4 s[/tex]  

[tex]v=-0.08\times 10.89\sin (10.89\times 0.4)[/tex]  

[tex]v=0.817 m/s[/tex]  

(b)time Period

[tex]T=2\pi \sqrt{\frac{m}{k}}[/tex]  

[tex]T=2\pi \sqrt{\frac{1.6}{190}}[/tex]  

[tex]T=0.576 s[/tex]