A 5.60 g bullet moving at 501.8 m/s penetrates a tree trunk to a depth of 4.59 cm. a) Use work and energy considerations to find the magnitude of the force that stops the bullet. Answer in units of N

Respuesta :

Answer:

Explanation:

Given

mass of bullet [tex]m=5.6\ gm[/tex]

velocity of bullet [tex]v=501.8\ m/s[/tex]

Depth of penetration [tex]d=4.59\ cm[/tex]

According to the work energy theorem work done by all the force will be equal to change in kinetic energy of Particle

Suppose F is the force which is opposing the bullet motion

change in kinetic Energy [tex]\Delta K=\frac{1}{2}mv^2-0[/tex]

[tex]\Delta K=\frac{1}{2}mv^2=\frac{1}{2}\times 5.6\times 10^{-3}\times (501.8)^2[/tex]

[tex]\Delta K=705.049\ J[/tex]

[tex]\Delta K=F\cdot d[/tex]

[tex]F=\frac{\Delta K}{d}[/tex]

[tex]F=\frac{705.049}{4.59\times 10^{-2}}[/tex]

[tex]F=15,360.54\ N[/tex]

[tex]F=1.536\times 10^4\ N[/tex]