What is the solution of the equation (x – 5)2 + 3(x – 5) + 9 = 0? Use u substitution and the quadratic formula to solve.
x = StartFraction negative 3 plus-or-minus 3 i StartRoot 3 EndRoot Over 2 EndFraction
x = StartFraction 7 plus-or-minus 3 i StartRoot 3 EndRoot Over 2 EndFraction
x = 2
x = 8

Respuesta :

Answer:

Option 2 -  [tex]x=\frac{7\pm3\sqrt{3}i}{2}[/tex]

Step-by-step explanation:

Given : Equation [tex](x-5)^2+3(x-5)+9=0[/tex]

To find : What is the solution of the equation ?

Solution :

Using substitution method,

Let y=x-5

[tex]y^2+3y+9=0[/tex]

Using quadratic formula, [tex]x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]

Here, a=1, b=3 and c=9

[tex]y=\frac{-3\pm\sqrt{3^2-4(1)(9)}}{2(1)}[/tex]

[tex]y=\frac{-3\pm\sqrt{-27}}{2}[/tex]

[tex]y=\frac{-3\pm3\sqrt{3}i}{2}[/tex]

Substitute back,

[tex]x=\frac{-3\pm3\sqrt{3}i}{2}+5[/tex]

[tex]x=\frac{-3\pm3\sqrt{3}i+10}{2}[/tex]

[tex]x=\frac{7\pm3\sqrt{3}i}{2}[/tex]

Therefore, option 2 is correct.

Answer:

Option 2

Step-by-step explanation:

I just took the test and got it right.