A computer hard disk starts from rest, then speeds up with an angular acceleration of 190 rad/s2rad/s2 until it reaches its final angular speed of 7200 rpmrpm. mastering physics

Respuesta :

Answer:

962 rpm.

Explanation:

given,

angular acceleration = 190 rad/s²

initial angular speed = 0 rad/s

final angular speed = 7200 rpm

                                 =[tex]7200\times\dfrac{2\pi}{60}[/tex]

                                 =[tex]754\ rad/s[/tex]

we need to calculate the revolution of disk after 10 s.

time taken to reach the final angular velocity

    using equation of angular motion

 [tex]\omega_f - \omega_i = \alpha t[/tex]

 [tex]754 - 0 =190\times t[/tex]

    t = 4 s

rotation of wheel in 4 s

[tex]\theta =\omega_i t+  \dfrac{1}{2}\alpha t[/tex]

[tex]\theta = \dfrac{1}{2}\alpha t^2[/tex]

[tex]\theta = \dfrac{1}{2}\times 190 \times 4^2[/tex]

 θ = 1520 rad

 [tex]\theta = \dfrac{1520}{2\pi}[/tex]

 [tex]\theta =242\ rev[/tex]

now, revolution of the disk in next 6 s

angular velocity is constant

[tex]\omega_f = \dfrac{\theta_f-\theta_i}{t_f-t_i}[/tex]

[tex]754 = \dfrac{\theta_f-1520}{10-4}[/tex]

θ_f = 6044 rad

θ_f = [tex] \dfrac{6044}{2\pi}[/tex]

revolution of the computer hard disk

θ_f =  962 rpm.

total revolution of the computer disk after 10 s is equal to 962 rpm.