Differentiate. (Assume k is a constant.). . y = 1 / (p + ke^p). . I tried using the quotient rule.... (f/g)' = (gf' - fg') / g^2. . and ended up with . (1-pke^(p-1)) / (p+ke^p)^2. . which is apparently wrong.

Respuesta :

To simplify things, one could just use differentiation with exponents.

y= 1/(p +ke^p)= (p + ke^p)^-1
dp/dy = -1 - ke^p

Answer:

[tex]\displaystyle\frac{d}{dp}\bigg[ \displaystyle\frac{1}{p + ke^p}\bigg] =-\displaystyle\frac{ ke^p + 1}{(p + ke^p)^2}[/tex]        

Step-by-step explanation:

We are given the function:

[tex]\displaystyle\frac{1}{p + ke^p}[/tex]

where k is a constant.

We use quotient rule to differentiate the given function

[tex]\bigg(\displaystyle\frac{f}{g}\bigg)' = \displaystyle\frac{gf' =- fg'}{g^2}[/tex]

Using the quotient rule and differentiating, we get:

[tex]\displaystyle\frac{d}{dp}\bigg[ \displaystyle\frac{1}{p + ke^p}\bigg]\\\\= \displaystyle\frac{(p+ke^p)(1)' - (1)(p + ke^p)'}{(p + ke^p)^2}\\\\= \displaystyle\frac{(p+ke^p)(0) - (1)(1 + ke^p)}{(p + ke^p)^2}\\\\= \displaystyle\frac{-(1 + ke^p)}{(p + ke^p)^2}\\\\=-\displaystyle\frac{ ke^p + 1}{(p + ke^p)^2}[/tex]